
LAST UPDATED

Febuary 2023

WRITTEN BY

Sofia Franek

@sofiafranek_

MEDIUMWEBSITE

www.sofiafranek.com

LINKEDIN

sofia-franek

Written by Sofia Franek

Understanding
JavaScript



Index
Syntax Parser
Creation Phase
Creation and Hoisting
Strict mode
Function statement vs. function expression
Functional Programming
JSON and Object Literals
Execution Stack
bind(), call() and apply()
Closures and Callbacks
Variable Scope
The Scope Chain
By value vs. by reference
Spread operator
Inheritance and the Prototype Chain
Prototype
Static methods
Polyfills and Transpilers
Understanding JavaScript Summary

Index PageUnderstanding JavaScript - Written by Sofia Franek

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

1
2

3-4
5-6

7
8-9

10
11-12
13-14
15-16

17
18

19-20
21-22

23
24

25-26
27
28

Pages



By default, your computer can’t read JavaScript code by itself. When you run
JavaScript code, a compiler will convert your code into instructions that your
machine can understand.

We can think of the syntax parser as an interpreter between your code and your
computer. It goes through your code and determines if the syntax is valid
JavaScript before executing the code. JavaScript is fault-tolerant, so it works
intelligently and tries to guess best and understand what you want.

Overall, our code isn’t directly executed by the computer. It’s passed via a
JavaScript engine that sets up the execution context and interprets the code.

Syntax Parser1.0

Page 1Understanding JavaScript - Written by Sofia Franek



In JavaScript, the syntax parser wraps the executable code in an execution
context. This execution context is a concept of the environment our code is
running on, either a global environment or a function environment.
The global execution context is accessible everywhere in our code. This context
creates two things for us: the global object and the variable called this.

Creation Phase1.1

Page 2Understanding JavaScript - Written by Sofia Franek

‘this’ keyword
The keyword this refers to an object that is executing a piece of code. It always
refers to an object that is executing the current function.

If the function being referenced is a regular function it means that this is
referencing the global object.

If the function being referenced is a method in an object, the this keyword is
referencing the object itself.



JavaScript is a single-threaded language which means it can run one command
at a time.

Creation and Hoisting1.2

Page 3Understanding JavaScript - Written by Sofia Franek

Creation
When code is executed in a JavaScript application it goes through two phases;
creation and execution phase.

Creation phase

When the application goes through the creation phase, the compiler runs
through the entire code. It stores in its memory all the function and variable
declarations. All variables are given a value of undefined. If there are any
conflicts between functions and variable declarations the variable is forgotten
and the function is remembered.

Execution phase

During the execution phase, the variables are assigned values and the functions
are executed.

Hoisting
If we want to invoke a function before its creation, you would think you would
get an error. But not with JavaScript.



In this example, JavaScript runs the function but shows the variable to be
undefined. This is because, in JavaScript, variables and functions are available,
even if they are written later in your code. This happens because, during the
creation phase of the code, memory is set up for variables and functions — this
is called hoisting.

Before code gets executed in JavaScript, the JavaScript engine already has all
the variables and functions in its memory, which is why you can call them.
However, variables by default have a value of undefined until you define a value
for them yourself in your code. So in the example above, that is why we received
undefined back, so make sure you define your variables before you use them!

Page 4Understanding JavaScript - Written by Sofia Franek



In JavaScript, the strict mode was introduced as a feature to allow us to place a
program or function in a strict operating context. This strict context stops
certain actions from being taken. The ’use strict' statement tells the browser to
use the strict mode.

Strict mode1.3

Page 5Understanding JavaScript - Written by Sofia Franek

Using strict mode for the entire script
The syntax used to enable strict mode is using the statement ’use strict' at the
top of our script file.

Strict mode can be used in two ways in JavaScript. In a global scope for the
entire script or applied to an individual function.

It’s recommended to enable strict mode on functions as you can get into a
situation where you're concatenating strict and non-strict scripts together.

Using strict mode for a function
To enable strict mode for a function we put the same statement for entire
scripts, ’use strict'but instead of at the top of the file, we put it in the function’s
body before any other statements.



Page 6Understanding JavaScript - Written by Sofia Franek

Benefits of using ’use strict'
Eliminates JavaScript silent errors by changing them to throw errors.
Fixes mistakes that make it difficult for JavaScript to perform
optimisations.
Disables features that don’t make sense or are poorly executed.
Stops some syntax likely to be defined in future versions of ECMAScript.
Makes it easier to write secure JavaScript.



Function statement vs. function
expression

1.4

Page 7Understanding JavaScript - Written by Sofia Franek

Function statement
A function statement declares a function, which is saved and expected later
when it's called in the code. Function statements must begin using the function
keyword and are invoked by using the declared function name.

A function statement gets hoisted during the creation phase of the execution
context, so the statement is available in your application memory.

Function expression
An expression is a unit of code that results in a value.
Function expressions load only when the applications interpreter reaches the
line of code the function lives on. They can’t be hoisted which allows them to
keep a copy of the local variables from the scope they were defined in.

A function expression can be stored in a variable, this means the variable can be
used as a function. Functions that are stored in variables do not need function
names. They are invoked using the variable name.



Function programming1.5

Page 8Understanding JavaScript - Written by Sofia Franek

In JavaScript, we can enforce functional programming. In general, implementing
functional programming leads to less code, as JavaScript already has a lot of
built-in functions for common uses. We can architect our application using pure
and isolated functions and avoid mutability and side effects.

Pure functions
A pure function in JavaScript is one that when you reapply the results to that
function again, won’t produce a different result. The same input will always give
the same output and will have no side effects.

Isolated functions
When using isolated functions, you have no dependence on the state of your
application. Anything you need for your function to be carried out you pass into
the function as an argument.

Side effects
Side effects are when your code interacts with anything outside the function
that would change the data in that function.

Mutability
Don’t change things in your functions once you’ve made them. If you need to
change something in your data, make changes to a copy. When you start to
change your functions further down in your code, you can run into mutability
and side effects. This is not clean coping and isn’t advised when functional
programming.



Page 9Understanding JavaScript - Written by Sofia Franek

Higher-order functions
Higher-order functions are functions that take other functions as their
argument. The most common higher-order functions in ES6 are map , filter and
reduce .

map()
The map method loops through each piece of data in an array instead of having
to use a loop.

I talk about filter() and reduce() in my article Common Methods in JavaScript
found in my other ebook JavaScript Fundamentals.

https://medium.com/@sofiafranek_/common-methods-in-javascript-23d269b36738


JSON and object literals1.6

Page 10Understanding JavaScript - Written by Sofia Franek

JSON and object literals are very similar in syntax. The only noticeable
difference between the JSON and object literal syntax is that in JSON both keys
and values are wrapped in double quotes, whereas in object literals it’s just the
values. JavaScript also has a built-in conversion between JSON and JavaScript
objects. If you want to convert an object to JSON data, you can use
JSON.stringify(object) .

Object literal
An object literal is when you declare an object in JavaScript which is a variable
that stores data in key-value pairs. The object literal syntax is the simplest way
to create JavaScript objects.

JSON
JSON is a widely used language for storing and transferring data that is based
on JavaScript objects. It copies syntax from the JavaScript object literal which
is why JSON and object literals are very similar looking.

JSON data is stored as a separate file from JavaScript, while object literals
appear within your JavaScript code files.



Execution stack1.7

Page 11Understanding JavaScript - Written by Sofia Franek

The execution stack in JavaScript keeps track of all the execution contexts
created during the life cycle of a script. Because JavaScript is a single-threaded
language, this means it’s only capable of executing a single task at a time. So
when actions, functions and events occur in your code it creates an execution
context for each one. This results in a stack of piled-up execution contexts to
be executed known as the execution stack.

How it works
The script is first loaded into the JavaScript engine, after this, the JavaScript
engine will create the global execution content and places it at the base of the
execution stack. The global execution content is only for JavaScript code that is
not inside of a function.

When the JavaScript engine encounters its first function, a new function
execution context is created and added to the execution stack. This new
context is placed on top of the current context.



Page 12Understanding JavaScript - Written by Sofia Franek

During the first function call, its execution context becomes the active context.
When a second function gets called it gets placed on the top of the stack and
becomes the active context instead. Once functions get executed completely,
they are popped out of the stack.

When the execution of all the code is completed, the JavaScript engine
removes the global execution context from the current stack.



bind(), call() and apply()1.8

Page 13Understanding JavaScript - Written by Sofia Franek

In JavaScript, everything is an object, and because everything is an object we
have access to properties to functions. The keyword this is a property given to
every function automatically and is used inside a function allowing us to refer to
an object that invokes the function where the this keyword is used.

.bind()
The bind()method in JavaScript creates a new function that when called has its
own this keyword set to the provided value. This allows us to define the value of
this when calling a function.

.call()
The call() method calls a function with a this value and arguments. So we can call
any function and state what this should reference within the calling function.
This method doesn’t make a copy of the function it is being called on.



.apply()
The call()and apply()methods serve the exact same purpose. The difference
between them is that call()expects all parameters to be passed in individually,
whereas apply()expects an array of all parameters.

Page 14Understanding JavaScript - Written by Sofia Franek



Closures and Callbacks1.9

Page 15Understanding JavaScript - Written by Sofia Franek

Closures
A closure in JavaScript are functions that are nested in other functions. Mostly
used to avoid scope clash with other parts of your JavaScript application.

In the chapter, Execution Stack 1.7 we know that after a function is returned, it
is removed from the execution stack, but the function nested inside the
function can still access the parent function variables, and this is known as
closures.

Callbacks
A callback in JavaScript is a function that is passed into another function as an
argument to be executed later. Functions can also be returned as the result of
another function. When functions are passed in as arguments they aren’t
executed immediately, they are called when the function that you passed the
callback function into calls it.

https://medium.com/@sofiafranek_/execution-stack-in-javascript-bea06fda1719


Page 16Understanding JavaScript - Written by Sofia Franek



Variable Scope2.0

Page 17Understanding JavaScript - Written by Sofia Franek

The variable scope in JavaScript is where variables live. If a variable is defined
outside of a function, it is accessible anywhere in the code.

Variables that are local live inside a function and will have a different scope for
every call of that function.

Variables that are defined with the keywords let and const are not accessible
outside of the block of code they were defined in.

If a variable is defined with the const keyword it cannot be reassigned.



The Scope Chain2.1

Page 18Understanding JavaScript - Written by Sofia Franek

In JavaScript, scope is a way of accessing variables, objects and functions in our
code. With scope, we can access what we need. There are two kinds of scope:
Global scope and Local scope. I talk more about these in detail in this article-
Variables in JavaScript.

The scope chain establishes the scope for a given function. So each time a
function is defined they have its own nested scope and any function defined
within another function has a local scope which is linked to its outer function.
This is what’s known as the chain.

https://medium.com/@sofiafranek_/variables-in-javascript-924fce6b1da4


Values vs. references2.2

Page 19Understanding JavaScript - Written by Sofia Franek

In JavaScript, we can pass by value and by reference. Passing by value happens
when assigning primitives while passing by reference happens when assigning
objects.

Values
In JavaScript, when we are passing by value all primitive values are passed by
value. Every time we assign a value to a variable, a copy of that value is created.
This is what’s known as passing by value. This happens every single time.

In this example, we can see myFirstVar defined a variable initialized with the
number 10. The next variable mySecondVar is initialized with the value of
myFirstVar — which is passing-by value. A copy of myFirstVar is assigned to
mySecondVar. When we increase mySecondVar by 5 we change the
mySecondVar variables value but it doesn’t affect myFirstVar the initial variable
value.

References
When creating objects, we’re given a reference to that object. If two variables
hold the same reference, then when we change the object it reflects in both
variables.



Page 20Understanding JavaScript - Written by Sofia Franek

In this example, we can see myFirstVar creates an array and defines a variable
with the reference to the created array. The next variable mySecondVar
initializes with mySecondVar with the reference stored myFirstVar — this is a
pass-by-reference. mySecondVar.push(5) mutates the array by pushing the
number 2, because myFirstVar and mySecondVar both reference the same
array, this change affects both variables.



Spread operator2.3

Page 21Understanding JavaScript - Written by Sofia Franek

Using the spread operator with an object

In JavaScript, the spread operator allows us to expand or spread an iterable or
an array. We can use the spread operator in a number of ways in JavaScript.

We can use the spread operator with object literals.

Clone an array using the spread operator

In the above example, you can see how variables arr1 and arr2 are both
referencing the same array. This is why a change in one variable changes the
result in both. However, if we want to copy the arrays but not keep them linked
to each we can use the spread operator. This means the change in one array,
doesn’t change the other.



Page 22Understanding JavaScript - Written by Sofia Franek

Copy an array using the spread operator
We can use the spread operator to copy the items into a single array.



Inheritance and the Prototype
Chain

2.4

Page 23Understanding JavaScript - Written by Sofia Franek

Inheritance with the prototype chain

Inheritance: An object getting access to the property and the methods of
another object.

In JavaScript, we have one construct for inheritance- an object. Each object has
its own private property that holds a link to another object called its prototype.
So this goes on, that prototype object has a prototype of its own, and this
continues until we reach null which has no prototype and acts as the final link in
the chain.

The prototype is a reference to another object.

JavaScript objects have a link to a prototype object. When we try to access a
property of an object, the property will be searched not only on the object but
on all the objects in the chain until a matching name is found or the end of the
prototype chain is reached.



Prototype2.5

Page 24Understanding JavaScript - Written by Sofia Franek

Every function in JavaScript has a prototype, but only when a function is a
constructor will the prototype be used. The prototype, however, is not the
function’s prototype it’s the prototype of every object that’s being created if
you’re using it as a constructor.

We can use the new keyword to set the prototype to the function’s prototype.

We can also add features to objects using the prototype property of the
function constructor. When adding properties to the constructor it’s different
to adding properties to an object.



Static methods2.6

Page 25Understanding JavaScript - Written by Sofia Franek

In JavaScript, static methods are bound to a class, not the instance of that
class.

Class: Blueprint for creating objects. A class encapsulates data and functions
that manipulate data.

Static methods are designed to live only on the constructor in which they were
created and static methods cannot be passed down to any children.

Constructor: A special function that creates and initialises an object instance of
a class, they get called when an object is created using the new keyword.

In ES6, we define static methods using the static keyword. To call a static
method from a class constructor, we use the class name followed by the . and
the static method.



Page 26Understanding JavaScript - Written by Sofia Franek

In the example above, you can see that newName of the newPerson is still
“Susanna”, it hasn’t changed its value to “Franek”. This is because newPerson.
changeName isn’t a function, the function isn’t passed down to the newPerson
instance. This is evidence that static methods cannot be passed down to any
children.



Polyfills and transpilers2.7

Page 27Understanding JavaScript - Written by Sofia Franek

JavaScript like many programming languages steadily evolve. To make our
modern code work on older engines that don’t understand the most recent
features yet we have two tools: transpilers and polyfills.

Polyfills
In JavaScript, a polyfill is a piece of code that can add and/or update a feature
that the engine may lack.

Some popular polyfill libraries are- core.js and polyfill.io.

Transpilers
In JavaScript, a transpiler is a special piece of software that can translate source
code to another source code. It can read and understand modern code and
rewrite the code into older syntax that will also work on outdated engines. One
of the most popular transpilers is Babel.

Project build systems like Webpack allow us to run a transpiler automatically on
every code change so it’s easy to integrate transpilers into our development
process.

https://www.npmjs.com/package/core-js
https://polyfill.io/v3/


Syntax Parser
Creation Phase
Creation and Hoisting
Strict mode
Function statement vs. function expression
Functional Programming
JSON and Object Literals
Execution Stack
bind(), call() and apply()
Closures and Callbacks
Variable Scope
The Scope Chain
By value vs. by reference
Spread operator
Inheritance and the Prototype Chain
Prototype
Static methods
Polyfills and Transpilers

In this eBook, we have covered the following topics which I think help with our
understanding of JavaScript, applying the fundamentals and using them in real
practice.

Understanding JavaScript
Summary

2.8

Recommend resources
Eloquent JavaScript 3rd Edition (Book) - https://eloquentjavascript.net/

Medium - https://medium.com/

MDN Web Docs - https://developer.mozilla.org/en-US/docs/Web/JavaScript

Page 28Understanding JavaScript - Written by Sofia Franek

https://eloquentjavascript.net/
https://medium.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript


Happy coding!

Thank you for
reading my eBook.


